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This article presents a method for the determination of the eigenvalues
and eigenfunctions of Fredholm’s linear integral equation with a positive
definite root, which is the correlation function of a function of a
random variable, and is related to the phenomenon of white noise by a
linear differential equation. This method is a modification of the method
given in article [1] for the solution of an integral equation of the
first kind, occurring in the statistical theory of optimal systems.

L. A short exposition of the method of solution of an
integral equation of the first kind. In article [ 1] a method for
the solution of an integral equation of the first kind with finite limits

wag given. This equation is always reducible to the fom
T

(Kewegwdi=7w)  o<usmn (1.1)
0
in the case when the real positive definite symmetrical root K(t, u) is
the correlation function of a random function X(¢), and is related to
the white noise V(t) by the linear differential equation

FX — HV (D=d)

ar (1.2)

where F and H are polynomials relative to the operator D, with arbitrary
real variable coefficients

n m
= 2} ax Dk, H = D) b, D¥ (m < n) (1.3)
k=0 k=0
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In this case, the root of equation (1.1} is expressed by the fomula
(2, 3]
Cf)
K (&, u) == \ w(t,)w(u, 1) dt (1.7
e

vhere w({t, 7) is an integral of the differential equation

Fouwlt, )= H 8{t+7) (1.5)
equal te zero forr > t.

The solution of equation (1.1) obtatned in article [ 1] is expressed Ly

the formula

where the function n{t) and another function &(t) are defined in the
interval 0 < t < T, using the differential equations

H (1) = (1) (1.7)
HE(t)=F 1 (1) (1.8)

For negative t the function n{t) is defined using the differential
equation

Frq(t) = (t<0) (1.9)

and the functions £(t) and f(¢) using formula (1.7) and differential
equation (1.8) respectively. For all values t < T the functions ¢ and
are integrals of equations (1.8) and (1.7), and are defined by the

formulas
T

w (1, 1) /() dx, n(t) = Sp()\, E() dr {1.10)

H

¥~

E)=

[e
8_/

where @7 (t, 7 ) and p{A, t} are the corresponding weighting functions,
{1,2}. Fornulas (1.10) give the necessary conditions for the determina-
tion of all integration constants, after which the functions & and g
and the sclution (1.8) of equation (1.1} are fully determined.

2. An application of the method to the finding of eigen-
values and eigenfunctions. The method presented can be applied
after an appropriate modification to the finding of the eigenvalues and
eigenfunctions of the homogeneous linear integral equation

A
S}((u,i}go(i)p(l)dt == he (1) Ou=<T) 2.1
9

whose root i3 determined using formula (1.4) and equation (1.5). Given



Eigenvalues and eigenfunctions of integral equations 747

any non-negative function p(t), the equation (2.1) differs formally from
the equation (1.2) only in that its right member is the product of an un-
known eigenvalue and an unknown function. Therefore, letting in the
formulas of the preceding section

gy =q(t)p(t), J{) =re(t) O<t<T) (2.2)

and making the corresponding changes, we obtain an algorithm for the de-
termination of the eigenvalues and eigenfunctions.

On the basis of the equalities (2.2), formula (1.6) and equation (1.8)
can be rewritten in the form

PU) = -;%T)—F‘Yz(t) (2.3)
HE(t) = M ¢ (t) (2.4)

Substituting into equation (2.4) the expression (2.3) of the function
¢, and the expression (1.7) of the function &, we shall obtain the
following equation determining the function n in the interval 0 < ¢t < T:

1 * 1 *
F(«;F 7)— + HH 7 =0 0<t<T) (2.5)

This is a linear differential equation of order 2n, containing an un-
known parameter A . Let us denote by v, (¢, A), ..., v, (t, A) any 2n
linearly independent integrals of equation (2.5). Then the general inte-
gral of equation (2.5) will be expressed by the formula

2

() = 25 revu (8, )) O<t<T) (2.6)

V==

-1

-

Substituting this expression into (2.3) we shall obtain

2n
o () = X vvou (M) 0<i<T) 2.7)
v=1
where
i .
wy(t,\) = _PWFZ vy (8, )) (v=1,...2n) (2.8)

In order to Jetermine the unknown integration constants Yir ceo1 Yop
in formulas (2.6) and (2.7), the functions n and f (when t < () must bLe
determined by an integration of equations (1.9) and (1.8), and then
subjected to the corresponding conditions at the end points of the
interval 0 < ¢t < 7, which follow from the formulas {1.10). The general
integral of equation (1.9) and the corresponding expression for the
function f are defined, for t < 0, using the formulas [ 1]
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n

W =@, fO=2deak0 <o) (2.9)

r=1

where n,, ..., 7, are any linearly independent integrals of equation

(1.9) and

t

= w@ 0 E n@d o=t (2.10)

—o0

For the determination of the integration constants Yir vovs Yop
Cy» +vvy C, We have the following conditions.

First, a solution of the integral equation (2.1) cannot contain 8-
functions. Formula (2.3) shows that in order that this be true, it is
necessary that the functions 5, n”, ..., '™ 1) be continuous at the
points t = 0 and t = T. This condition gives the 2n equations:

2n n
D) 1920 (0,%) — ) e (0) = 0 (k=0,1,....,n—1) (2.11)
v=] o r==1

Mo (TN =0 (k=0,1,...,n—1) (2.12)

wv=]

Secondly, the function f{t) defined by the second formula of (2.2) for
0< t <T, and by the second formula of (2.9) for t < 0, must satisfy the
equation (1.8) at the point t = 0. This condition, together with equat1on
(1.7), expresses the discontinuities of the functions f, f°, f -1
at the point t = 0, in terms of the discontinuities of the der1vat1ves of
the function n, i.e. it gives n equations. We shall, however, derive these
equations in a somewhat different manner. We shall replace the equation
(1.8), which is considered as a differential equation with an unknown
function f(t), by an equivalent system of equations of the first order,
defining the new unknown functions zy, «+s, 2z, by the formulas

2=/, Zkt1 = jo (k=1,..,n—m—1) .
k—n++m (2.13)
e = /0 — D gk B (k=n-—m,. . ., n—1)
h=0
where
b
gn—m = am (k:n—m+1,,,,,n)
n
(2.14)

13 =—1—[ bnx — 2 L Cn+l—k an+z+h—th ]

h=n—m =0
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Then equation (1.8) will be replaced by the system of equations

2 = Zp4y (k=1,...,n—m—1), Zk'=Zk+1—{—q;cE (k=n-—m,...,n--1;

_ Z 21+ gk (2.15)

By virtue of condition (2.11) and formula (1.7), the function £ is
continuous at the point t = 0, Consequently, the integral of the system
(2.15) is also continuous at the point t = 0. This condition, on the
basis of the formulas (2.13), (2.2), (2.7) and (2.9), gives the follow-

ing n equations:

2n n
2 Dpy 0,00 (0, %) — D) ¢ £r0(0) =0 (k=0,1,...,n—m—1)
v==1 r=1,
. bmtm (2.16)
Infomon— 33 iR 0w © n]-
. i b
—Se, [f ) (0) — E S ¢l el )80 ©)] =0
r=1 =0 =0

(kwﬁ.n——rn,.. n—1)
where

w (6, =H o (6,8 (v=1,...,21), E@O=Hn{) =1...,n

The equations (2.11), (2.12) and (2.16) are a system of 3n homogeneous
Iinear algebraic equations 1in Yir vvor Yopr Cpo vves Cpy whose coeffi-
cients depend on the unknown eigenvalue A . In order that a non-zero solu-
tion of this system exists, it is necessary that its determinant A (A )
equals zero

A =0 (2.17)

This equation determines the eigenvalues. After the determination of
the eigenvalues, equations (2.11), (2.12) and (2.16) will make it possible
to express the magnitudes y,, ..., y,., ¢;, ..., ¢, corresponding to
every eigenvalue A, in terms of one of these. The latter will be deter-
mined by the normalizing condition

T
SI?(L‘) Fe(t)dt =1 (2.18)

If for some eigenvalue A the rank of the coefficient matrix of the
system of equations (2.11), (2.12) and (2.16) be less than 2n- 1, and
equal, say, to 2n- s, then this will mean that the given eigenvalue A
is of multiplicity s. In this case, equations (2.11), (2.12) and (2.16)
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will express all coefficients y,, ¢, in terms of any s of them, which can
be chosen arbitrarily. This condition can be used for the determination
of s systems of values of these s coefficients, such that s orthonormal
eigenfunctions are obtained.

The method presented is easily extended to the case of a complex sym-
metrical root (lermitian).

In the case when all coefficients of the operators F and H are constant
and p(t) = 1, equation (2.5) is a linear differential equation with con-
stant coefficients. In this case the analytic expressions of the functions
M, vy and @ are eastly found, and the entire problem is solved analytic-
ally. Thus, in the case when the root of equation (2.1) is the correlation
function of a stationary random function with fractional rational spectral
density, the demonstrated method gives a complete analytic solution of the
problem of the determination of eigenvalues and eigenfunctions. This solu-
tion was obtained earlier by another method in articles [5] and [67.

Example 1, To find the eigenvalues and eigenfunctions of the equation
(2.1) in the case when F and H are defined by the formulas
F - Ty (I)D-}L dp ([), H=1 (2-19)
and p(t) = 1, In this case equation (1.5), determining the function

w(t, r) is an equation of the first order which is easily integrated,
after which the formula (1.4) gives

far (1) g2 (27 for t >’
Kt t)-= (2.20)
\gx (¢) ga (1) for t <1’
where
ag (7) dt
n(t) = exp{—g af(T) d’c} ) 72 () = q1 {1) S Az (D) e (%) (2.21)
0 -—00
The equation {(2.5) has, in this case, the form
1
mfﬁf—G&%~%m~-%m'~ﬁ%”“§)ﬂzo (2.22)

Let us denote by vl(t, A, v, (¢, A) some two linearly independent
integrals of equation (2.2). Then formula (2.8) gives

o, (¢, ») = — -‘%- [ar (£) o, (, 2)] + ao (H)v. (2, 2) (v=1,2) (2.23)

The formula (2.7) which expresses the unknown eigenfunctions will
assume the form:

@ (£) = mop (8. A) + 120z (8, }) (2.24)

For ¢t < 0, the functions  and f are expressed, as in example 1 of
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article [ 1], by the formulas

(1) = ERGIROE f (1) = c1q2 (8) (t<Oy {2.25)

Since in the given case n= 1, m= 0, we have for the determination
of the unknown constants y,, y, and ¢, one equation (2.16), one equation
{2.11), and one equation (2.12):

AMyio (0 2) + 1202 {0, 2)] — €192 (0) =0
Cy
1 (0, tg (0, B) — e .
7181 (00 A) 122 (0, 2) — gy gy = 0 (2.26)
7% (7,9 )\} -+ Tab2 (T, }\) =

Consequently, the equation (2.17% which determines the eigenvalues,

will in this case have the form
7\031 (O. 7~) 7.(02 (0, 7~) qs (O)

1
a (0) g2 (0}
Ty (T, ;’\) Py (77, 7) 0O

Ay =| 2,{0,%) 2 (0, 2)

Having determined the eigenvalues by way of solution of the equation
(2.27), we shall express two of the unknown coefficients Yir Yor €4 in
terms of the third. The latter will be determined from the normalizing
condition (2.18),

Example 2. A more detailed examination of a particular case of the
preceding example, when the coefficients a, and a, are constant and
equal respectively to

a - 1
4o = 2 = ;,/25
In this case
4
1 — .
o ()= sy = (2.28)

and formula (2.20) assumes the form

K (t, 1) = el (2.29)
Equation (2.2) has, in this case, the form

—— (:ﬂ‘_ e ) £ =0 (2.90)

£

This equation with constant coefficients has two linearly independent
integrals of the form
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vy (8, 0) = et vy (1, 2) = et (2.31)

where

The formulas (2.3) give

[ A {7 T BRI
o1 (1,2) = g e, (2, 2) = e (2.33)
The equation (2.27) assumes the form:
o — iw a 4w '
N ——— A e 1
2a 23 !
1 1 Vg |=0 (2.3%)
ioT il
e ¢ 0

Expanding the determinant, taking into consideration (2.32), and per-
forming the elementary transformations, we can bring equation (2.34) to
the form

200

tan o . — e (2.35)

af— w?

This equation determines an infinitely increasing sequence of values
W=y, @, .. . In the figure a graphical solution of the equation
(2.35) is represented for the case when a = "7 /47T

Substituting the value w= w determined by the equation (2.35) in

-
(2.32), and solving the resulting equation with respect to A, we shall
find the corresponding eigenvalue

2a )
N @ e v =1.2,..) (2.36)
This formula gives an infinitely decreasing sequence of eigenvalues.

The system of equations (2.26) in this case has the form
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A(a—io) 71 4 (¢ + i) y2) ~V2ae¢, =0

T + T2 — VZTI cy = 0, 'TlgimT + .r?e‘-‘in =0

The last of these equations gives y, = ~ yleZ‘“)T. Substituting this
expression into any of the two remaining equations of (2.37), we can also
express c, in terms of Yq- This, however, is not necessary, since the
constants ¢, are auxiliary, and do not directly enter into the scolution
of the problem,

Substituting the found expressions (2.33) and Y into formula (2.24),
and performing elementary transformations, and then determining Yy from
the normalizing condition (2.18), we find the eigenfunctions

P, (2) = I/T—i—i—sin {m\,(t——i-!—i—%ﬂ-} (v=1.2,..) (2.38)
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